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Jet Mixing and Emission Characteristics of Transverse Jets

in Annular and Cylindrical Confined Crossflow
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NASA Lewis Research Center

Cleveland, Ohio

3-D turbulent reacting CFD analyses were performed on

transverse jets injected into annular and cylindrical (can)

confined crossflows. The goal of this study was to

identify and assess mixing differences between annular

and can geometries. The approach was to optimize both

annular and can configurations by systematically

varying orifice spacing until lowest emissions were

achieved, and then compare the results. Numerical test

conditions consisted of a jet-to-mainstream mass-flow

ratio of 3.2 and a jet-to-mainstream momentum-flux

ratio (J) of 30.

The computational results showed that the optimized

geometries had similar emission levels at the exit of the

mixing section although the annular configuration did

mix-out faster. For lowest emissions, the design

correlation parameter (C=(S/H)vO-) was 2.35 for the

annular geometry and 3.5 for the can geometry. For the

annular geometry, the constant was about twice the

value seen for jet mixing at low mass-flow ratios (i.e.

MR < 0.5). For the can geometry, the constant was

about 1 1/2 times the value seen for low mass-flow

ratios.
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e_, Turbulent Energy Dissipation of Mainstream

_rb Rich-Bum Equivalence Ratio

01b Lean-Burn Equivalence Ratio

pj Density of Jet
p_ Density of Mainstream

1. Introduction

In recent years, the concern over the environmental

impact of aircraft gas turbine technology has steadily

increased. The need for the reduction of both carbon

monoxide (CO) and oxides of nitrogen (NO x) is quickly

becoming a very sensitive issue. Past advancements to

aircraft gas turbine engines have focused on increasing

the overall thermodynamic cycle efficiency by

implementing increases in pressure and temperatures.

The increases tend to have an adverse effect on NO x

emission levels, necessitating the development of new

ways of controlling NO r

In order to improve the emission signatures of

combustors, the industry has departed from the standard

single axial staged combustion to pursue staged

burning. One such concept being evaluated both

experimentally and numerically is the Rich-burn/Quick-

mix/Lean-burn (RQL) combustor I. This combustor

utilizes the staged burning concept in which the primary

zone is designed to operate fuel rich. 2 The combustion

products high in carbon monoxide concentration enter

the quick-mix section where mixing is initiated with

bypass air. The combustion process is then completed

in the lean-bum region.

To achieve the low emission goals set for RQL

combustors, high importance must be placed on

attaining rapid and uniform mixing in the quick-mix

section. Recent experimental and numerical studies

have been completed that investigated and assessed

improved mixing concepts 318.

2. B_ar,kgmml

For quite some time the importance of research on jet

mixing in a confined crossflow has been recognized as

having a significant impact on a variety of practical

applications. Within gas turbine technology, jet

mixing plays a particularly important role in the

dilution zone of the combustor. The dilution zone is

the aft zone where the products of combustion are mixed

with air to produce a temperature profile acceptable to

the turbine.19-21

As of late, many studies have been conducted relative to

jet mixing in gas turbine applications 22-27. These

studies have concentrated on both rectangular and

cylindrical geometric configurations. The results of

these studies have identified two significant design

parameters that influence the mixing pattern: 1) jet-to-

mainstream momentum-flux ratio (J) and 2) orifice

spacing-to-duct height ratio (S/H). Optimum mixing

relationships were determined to be a function of the

product of S/H and square root of J for the range of

conditions tested and allalyzedl9:

C = (S/H}4Y (I)

These studies summarized in Ref. 19 examined both

two-sided and single-sided injection in rectangular

geometries. Table 1 shows the constants derived from

these studies. The optimum C value was shown to be

1.25 for inline, two-sided injection, while single-sided

injection produced a C value of 2.5. It was determined

that the best mixing occurred when the dilution jet

reached a penetration level of 1/4 duct height for two-

sided injection. Previous dilution jet work focused on

conditions where the jet-to-mainstream mass-flow levels

were less than 0.50. More recent numerical and

experimental research has examined the effect of

increased mass-flow ratios, more typical of RQL

combustors (i.e. MR > 2.0). The results for MR > 2.0

have concluded that the C value is about twice (2.5 vs.



1.25)thatof thelowermass-flowratiocasesfor two-
sided,rectangularconfigurations.
Presently,thedesignofthemixingsectionispursuing
two options. The first employsa full annular
geometry,whilethesecondconsistsof a canmixing
section.Thebasicquestionsthatneededtobeaddressed
were:I) is thereaninherentdifferencebetweentheway
canandannularconfigurationsmix, 2)doesoneof
theseproducehigherNOxthantheother,and3)canone
beoptimizedbasedon knowledgeof the other?
Although many factors (i.e. liner cooling
considerations,structuralrequirements,etc.,)willplaya
rolein thedecisionmakingprocess,the inputof
geometryonemissionsignatureisanequallyimportant
factor.Thisstudysoughttoaddresstheseissuesbya
systematiccomputationalanalysis. A complete
description of the work follows.

3. DCEE_C.,_

The approach in this study was to perform 3-D

numerical calculations on generic geometry sections.

The CFD code named CFD-ACE28 was used to perform

the computations. The basic capabilities/methodologies
in CFD-ACE include:

(1) co-located, fully implicit and strongly

conservative finite volume formulation;

(2) solution of two- and three-dimensional Navier-

Stokes equations for incompressible and

compressible flows;

(3) non-orthogonal curvilinear coordinates:

(4) multi-block grid topology;

(5) upwind, central (with damping), second order

upwind and Osher-Chakravarthy differencing
schemes;

(6) standard 29, extended30, RNG and low Reynolds

number 31 k-e turbulence models;

(7) instantaneous, one-step, two-step, and four-

step heat release and emission combustion

models;

(8) spray models including trajectory,

vaporization, etc.; and

(9) pressure-based solution algorithms including

SIMPLE and a variant of SIMPLEC.

4. Details of Numerical Calculations

The analysis was divided up into two parametric studies.

The first parametric study focused on the annular

geometries, while the second concentrated on the can

geometries. A schematic of the annular geometry is

shown in Figure 1. The inner radius of the annulus

measured 0.3896m with the outer radius measuring

0.4404m. The height of the mixing section was

0.0508m. The computation domain extended 0.152m

from the leading edge of the orifice (x/H=3.0). The

walls were modeled as being 0.0064m thick. Above

each orifice a plenum 0.076m long was constructed.

The annular model consisted of two-sided injection from

the top and bottom orifices into the mainstream
crossflow.

A constant shape orifice was selected for use in both of

the parametric studies. The orifice was a slot with

rounded ends and had a 2: I length-to-width aspect ratio.

The selection of the 2:1 rounded slot was made to

ensure enough orifices would be able to fit on the ID of

the annular configuration for an underpenetrated jet

configuration. The 2:1 rounded slots were aligned with

the long dimension in the direction of the mainstream
flow.

The can configurations were made comparable to the

annular configuration by making the can cross-sectional

area equal to a one-nozzle sector of the annular

geometry. Thus for a 24-nozzle annular combustor, the

diameter for the equivalent-area can geomet_ was

0.084m. A schematic of the can geometry is presented

in Figure 2.

To enhance the computational efficiency of the

numerical calculations, only one set of orifices (top and



bottom)wasmodeled.Similarly,onlyoneorificewas
modeledfor the cangeometry.For the annular
geometry,theorificeswerelocatedon theinnerand
outerdiameterin thesameaxialplane,andinlinein the
transversedirection.Thetransversecalculationdomain
extendedfrommidplanetomidplanebetweenthejets'
centerlines.Periodicboundaryconditionswereassumed
onthetransverseboundaries.Forthecangeometry,a
singleorifice was locatedon theouterliner with
periodicboundaryconditionsbeingspecifiedon the
transverseboundaries.

Fourparametric cases were analyzed for the annular

geometry, while six cases were performed for the can

geometry. For each case, the orifice spacing, S/I-I, was

varied parametrically while maintaining all other design

variables constant. Note that as the orifice spacing was

varied, the size of the orifice was changed to maintain

constant flow area. The intent of this method was to

optimize each geometry based on the lowest emission

signature. A full range of jet penetration levels was

studied, including under, optimum, and over-penetrating

Tables 2 and 3 show the geometry specifics for the can

and annular cases, respectively. The six can cases are

designated C1-C6. These cases correspond to 5, 6, 7, 8,

10, and 12 holes on the can liner. For the annular

analysis, the cases are labeled as AN1-AN4. Test case

,_N1 corresponds to 3 orifices on the inner and outer

dtameter (6 orifices in a one-nozzle sector) and continues

to 6 orifices on ID&OD (12 orifices in the nozzle

sector). Since the areas of the annular 15 degree sector

and the can are set equal, the orifices are identical when

there are the same number of orifices in the can and

annular configurations (e.g. ANI & C2 have identical

orifices).

To determine the jet-to-mainstream momentum-flux

ratio (J), the jet velocity had to be calculated. The

pressure drop across the orifice was determined by using

the total pressure at the plenum inlet and the mass-

averaged static pressure across the orifice exit. It should

be mentioned that the static pressure and radial velocity

at the orifice exit were highly non-uniform in the axial

direction. From this pressure drop, the velocity of the

jet at the orifice exit was calculated, as well as the

orifice discharge coefficient (Ca). The C d for the orifice

was calculated to be 0.685. Using the jet velocity based

on the pressure drop, the momentum-flux ratio was

calculated to be 30.

The turbulence boundary conditions, k & E, were
determined in the following manner. For the

mainstream (rich-burn) flow, the turbulence parameters

were determined from unreported CFD calculations of

the rich-burn section. For the jets, the turbulence levels

were determined by the CFD analysis as the flow

proceeded from the plenums into the orifices. The inlet

turbulence into the plenum had no effect on the

turbulence through the orifices; hence the inlet

turbulence to the plenums were set at nominal values.

The flow conditions of the mainstream and jets were:

Jets

U** = ,1-3.5 m/s Pj_t

T_. = 2035 K Tie t

P,, = 9.72x105N/m 2

k_, = 118.0 m2/sec 2

£_. = 5.4 x 104 malsec 3

= 9.72 x 105 N/m 2

= 777 K

J = 30

mj/m= =3.20

Texit = 1755 K

_rb = 2.0

01b = 0.425

Grids

The computational mesh was created using CFD-

GEOM 32, an interactive three-dimensional geometry

modeling and mesh generation software. A typical



annularcaseconsistedof approximately63,000cells.
The breakdown of the cell distribution was as follows:

Top and Bottom Plenums 42x 10x28 [x,y,z direction]

Mixing Region 77x20x28

The can grid was separated into:

Top Plenum 42x10x28

Mixing Region 77x20x28

The orifices were composed of 28 x 14 uniformly

distributed cells. The orifice was modeled with 5 cells

in the vertical direction to represent the wall thickness

of 0.0064m. A typical annular grid is shown in Figure

3. The grid upstream and downstream of the orifice

region was expanded/contracted so that each cell adjacent

to the orifice region matched the cell size in the slot

region. The cells in the vertical direction were

compressed in the vicinity of the wall to more

accurately capture any wall effects.

Numerics & Models

The following conservation equations were solved: u

momentum, v momentum, w momentum, mass

(pressure correction), turbulent kinetic energy (k),

turbulent energy dissipation (e), enthalpy (h), and

mixture fraction (f). The convective fluxes were

calculated using upwind differencing, and the diffusive

fluxes were calculated using central differencing. The

standard k-e turbulence model was employed and

conventional wall functions were used. The walls were

assumed to be adiabatic. The turbulent Schmidt and

Prandtl numbers were set to 0.5. A fast chemistry

(instantaneous) model was assumed. Equilibrium

products were also assumed. The use of a fast

chemistry model was based on LSENS 33 calculations

using a 63-step, 33 species reaction model; the

chemical reacuon times were small compared to flow

times at the conditions being studied.

ConverEence

All error residuals were reduced at least 4 orders of

magnitude, and continuity was conserved in each axial

plane to the fifth decimal. A converged solution

required approximately 8-12 CPU hours on a CRAY C-

90 computer.

Rich-Bum Inlet Conditions

The inlet to the rich-bum section was assumed to be

premixed fuel and air. The fuel used in this analysis

was CloHI9 , representative of Jet A fuel. The inlet

premixed equivalence ratio (Orb) was specified to 2.0.

As the inlet flow entered the first cell of the

computational domain, it burned immediately to

equilibrium products. The resulting downstream flow

was representative of rich-bum conditions entering the

quench zone.

5. Data Postprocessing

Graphics postprocessing was performed using CFD-

VIEW 3435, an interactive graphical visualization tool.

The NO x results were calculated using a post-processing

tool named CFD-POST. 36 Using the equilibrium

species calculated in the CFD-ACE solution, NO x was

calculated using an extended Zeldovich thermal NO x

model shown below in equation (2). 37,38 The effect of

turbulent fluctuations was included by using a

prescribed, beta function pdf.

l- (NO)_
_NO) K(Oz)(Nz)

- 2k_(O)_ 2) (2)
dt k 1(NO)

_(O2)+ k_(OH)]

where, K=(kl/k 1)(k2/k_2 ) is the equilibrium constant for

the reaction between N 2 and 02.



6. Results and Discussion

The results for the parametric cases are presented using

three variables: equivalence ratio, temperature, and NO x

production.

The effect of orifice spacing on jet penetration is

presented in Figures 4 and 5. Plotted in Figure 4 are

the temperature contours in a lateral plane through the

orifice centerline. Similarly, the equivalence ratios are

shown in Figure 5. The 6ID/6OD configuration (case

AN4 in Table 3) is clearly underpenetrated, represented

by a core of mainstream fluid passing through the center

of the duct. In contrast, the 3ID/3OD case (AN1 in

Table 3) exhibits overpenetration of the jet; the

mainstream flow is deflected to the outer wall. This is

seen by the higher temperature along the OD and ID

wall for the 3ID/3OD (AN1) case. The 4ID/4OD (_N2

in Table 3) and 5ID/5OD (AN3 in Table 3)

configurations exhibit near-optimum characteristics.

The jet penetrates to approximately 1/4 duct height for

these cases. From the equivalence ratio contours shown

in Figure 5, the 5ID/5OD (AN3) appears to show the

most uniform downstream mixing characteristics at the

exit.

Shown in Figure 6 are axial planes at x/H=l.0 for

temperature and equivalence ratios. The high

temperatures along the wall in the 3ID/3OD (AN1) case

indicate the over-penetrating jets, while the 6ID/6OD

(AN4) case shows the hot mainstream flow in the duct

center typical of under-penetrating jets. Note that the

OD near-wall temperature is hotter than the ID near-wall

temperature for each case. This occurs because the

orifice spacing is greater for the OD liner, resulting in

more mainstream (rich-burn) flow passing between the

jets.

Figure 7 shows the NO x production for the annular

paramemc cases. NO x is mainly produced in regions

where there is near-stoichiometric temperature and

oxygen available. The high NO x production along the

OD wall in the 3ID/3OD (ANI) case results from

excessive mainstream flow passing between the jets and

then mixing with the jet airflow. When the jets

underpenetrate, as in the 6ID/6OD (AN4) case,

excessive NO x is produced along the center of the duct.

The lowest amount of NO x production occurs when the

jets have optimum penetration, i.e., 4ID/4OD (AN2)

case and the 5ID/5OD (AN3) case.

Figures 8 and 9 show the corresponding temperature and

equivalence ratio contour plots for the can parametric.

Note, only a single jet is shown for the can

configurations; the bottom of the plot represents the can

centerline. As seen in the previous annular results, an

increase in the number of orifices translates into a

corresponding decrease in jet penetration levels. It can

be seen in Figures 8 and 9 that the jets are

overpenetrated for the 5 orifice case (C1 in Table 2),

underpenetrated for the 8 orifice case (C4 in Table 2),

and near optimally penetrated for the 6 (C2 in Table 2)

and 7 (C3 in Table 2) orifice cases.

Figure 10 shows the axial planes at x/R=l.0 for

temperature and equivalence ratios. It can be seen that

stoichiometric burning occurs near the liner for the 5

orifice case (C1), near the centerline for the 8 orifice

case (C4), and near both the liner and centerline for the

6 (C2) and 7 orifice (C3) cases. Once again, the 6 (C2)

and 7 orifice (C3) cases appear to be near optimum in

terms of jet penetration and mixing.

Figure ! 1 presents the NO x production for the can

cases. By comparing Figure 11 with Figure 8, it can be

seen that the highest NO x production locations

correspond to areas of near stoichiometric flame

temperatures. For the overpenetrating, 5 orifice case

(C1), most of the NO x is produced next to the liner.

For the underpenetrating, 8 orifice case (C4), there is

almost no NO x being formed on the liner; all of the

NO x is formed on the centerline.



Emissions

To effectively quantify the emissions results, both the

NO x and CO signature must be considered in the

analysis. In some cases low NO x levels can be

predicted, but significant concentrations of CO can still

be present in the gas flow. High levels of CO

translates into combustion inefficiency, and is

undesirable. Low NO x that is achieved due to

combustion inefficiency is not an acceptable design.

Figure 12 presents normalized NO x as a function of

x/H for the annular cases. Up to x/H=0.5, all

configurations produce a comparable amount of NO x.

NO x continues to be produced all the way to x/H of 3.0

for the 3ID/3OD (ANI) and 6ID/6OD (AN4) cases, and

will continue being produced downstream of x/H of 3.0

due to lack of mixing. Both the 4ID/4OD (AN2) and

5ID/5OD (AN3) cases show the NO x leveling off by

x/H of 3.0. This "leveling off" is an indication of good

mixing. At the mixed-out temperature of these cases

(1755 K), no additional NO x should be formed once

near-complete mixing has occurred. If there are pockets

of higher equivalence ratio (and thus higher

temperatures), NO x will continue to be formed, as

shown by the 3ID/3OD (AN1) and 6ID/6OD (AN4)

cases. Figure 13 shows contour plots of both the

equivalence ratios and temperatures for the annular

parametric at x/H=3.0. These contour plots show that

the 4ID/4OD (AN2) and 5ID/5OD (AN3) cases have the

most complete mixing, while the 3ID/3OD (ANI) and

6ID/6OD (AN4) cases still exhibit significant radial

variations.

Figure 14 presents a plot of CO emissions index (El)

versus x/H for each of the annular cases. Note that the

CFD analysis assumes a fast chemistry approximation,

and any CO that is present in the flowfield is a direct

result of lack of mixing. Each CO El figure is divided

into two graphs. The first graph shows the overall CO

El levels for the parametric cases. The inserted graph

shows an enlarged view of the lower end of the CO EI

scale. Equilibrium CO El for @ib=0.425 is 2, and a

combustion efficiency of 99.5% corresponds to a CO El

of 20. A horizontal line is shown on the graphs to

represent the 99.5% combustion efficiency level. All

the cases reach a CO El of 20 well before reaching the

exit (x/H > 3.0). Of the four cases, the 3ID/3OD

(AN1) has the highest CO, not falling below 20 until

x/H of t.8.

Figures 15 and 16 show the normalized NO x and CO

E1 as a function of x/R for the can parametric. The NO x

curves all have positive slopes at x/R > 3.0 indicating

ongoing NO x production. Only the 6 (C2) and 7 (C3)

orifice cases are starting to level off. The CO curves

shown in Figure 16 take a much longer axial distance to

reach the 99.5% combustion efficiency level than the

annular cases (x/R=2.0- 2.5-can vs. x/H=l.5-annular),

and even then only the 5 (C1), 6 (C2), and 7 (C3)

orifice cases attain the 99.5% level. For the other cases

the positive slopes of the NO x curves and the presence

of CO remaining in the flowfield suggest the need of a

longer lean-burn section to achieve the necessary

combustion efficiency.

Based on the emission curves, the optimum

configurations are the 5ID/5OD (AN3) case for the

annular geometry, and the 7 orifice case (C3) for the can

geometry. These two configurations were selected as

being optimum because I.) they showed the lowest

overall NO x at the exit plane, and 2.) reached a

combustion efficiency of 99.5% before the end of the

mixing section. A comparison of the two optimum

configurations is shown in Figure 17. Note the x/Req
used for the annular geometry is based on the radius of

an equal area can. From Figure 17, both configurations

show similar trends of NO x production. The NO x

production in the first x/R=2.25 is approximately the

same. Towards x/R=4.0, the annular geometry shows a

slightly lower value of NO x. In addition, both curves

are "leveling off", indicating good overall mixing and

no NO x production (i.e. no significant NO x

contribution farther downstream). Therefore, from a

design standpoint, there is no significant emission



advantagegainedbytheselectionofeithertheannular
orcangeometry.

Design Correlation Constant for Annular and Can

The last columns of Tables 2 & 3 show the optimum

mixing design correlation constants based on the

equation, C = (S/I-I)vCJ".

For the can cases (Table 2), the constant were

determined using two different spacing methods;

1. Orifice spacing at the OD

2. Orifice spacing at a radius corresponding to

equal flow areas in the can

These methods are illustrated at the bottom of Table 2.

Similarly, these methods exist for the annular

geometry. For the annular cases, the constants were

calculated based on orifice spacing at the ID and OD

(Method 1), and equivalent area spacing (Method 2).

Method 2 has been reported to be the appropriate

method for both can and annular configurations. 19

Based on the emission results, the optimum

configuration for the annular geometry is the 5ID/5OD

(AN3) case. The design constant for this case is 2.35.

This C value is consistent with results from previously

performed high jet-to-mainstream mass-flow ratio (MR

> 2.0) analyses. It is about twice the value reported for

low MR's (< 0.5).

The can emission results indicate that the 7 orifice case

(C3) has the best emission signature. Using the equal

area approach, the C constant is 3.5, or 40% higher

than that reported for mixing at lower MR (< 0.5).

7. Conclusions

A CFD parametric analysis was performed on transverse

jets injected into both annular and can confined

crossflow. The slot spacing was systematically varied

while maintaining all other design variables constant.

Optimum configurations were determined based on jet

penetration, and NO x and CO emissions. The

conclusions that can be drawn are as follows;

1. Optimum annular and can geometries have similar

emission characteristics at the end of a mixing

section and lean-burn section (x/H=3.0) as long as jet

penetration/mixing is optimized.

2. For the MR of 3.2 evaluated in this study, the design

correlation constant [C = (S/H}4_] was 2.35 for the

annulus and 3.5 for the can. The value for the

annulus is about twice the value for low MR's (<

0.5). The value for the can is about 40% higher than

that for the low MR.
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Table1. SpacingandMomentum-Flux
RatioRelationships

Configuration C=(SIH) (_)

Single-side injection:
Under-penetration

Optimum
Over-penetration

Opposed rows of jets:
In-line optimum

Staggered optimum

< 1.25

2.5

>5.0

1.25

5.0
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Figure 1. Schematic of the Annular Geometry
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Figure 2. Schematic of the Can Geometry
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Figure 3. Typical Computational Mesh Used for Annular Parametric Analysis
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